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ABSTRACT

The effect of an arbitrary change of frame on the structure of turbulence

models is examined from a fundamental theoretical standpoint. It is proven,

as a rigorous consequence of the Navier-Stokes equations, that turbulence

models must be form invariant under arbitrary translational accelerations of

the reference frame and should only be affected by rotations through the in-

trinsic mean vorticity. A direct application of this invariance property

along with the Taylor-Proudman Theorem, material frame-indifference in the

limit of two-dimensional turbulence and Rapid Distortion Theory is shown to

yield powerful constraints on the allowable form of turbulence models. Most

of the commonly used turbulence models are demonstrated to be in serious vio-

lation of these constraints and consequently are inconsistent with the Navier-

Stokes equations in non-inertial frames. Alternative models with improved

non-inertial properties are developed and some simple applications to rotating

turbulent flows are considered. 0
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1. INTRODUCTION

Turbulence plays a fundamental role in a variety of physical systems 1

which evolve in non-inertial frames of reference. Various types of fluid

machinery and geophysical systems (e.g., gas turbines, propellers, ocean cur-

rents, and atmospheric weather fronts which can have a profound effect on our 0

daily lives) generate turbulence in non-inertial reference frames that are

undergoing time-dependent rotations and translations relative to an inertial

framing. Consequently, it is essential that a clear understanding of such

non-inertial effects on turbulence be gained if these physical systems are to

be modeled properly. Furthermore, due to the analogy between rotations and

curvature, a physical model which does not properly account for non-inertial

effects is likely to yield erroneous predictions for problems involving curva-

ture in inertial frames of reference.

To date, there have been no comprehensive studies of non-inertial effects

on turbulence modeling based on a rigorous analysis of the Navier-Stokes equa-

tions. Most of the previous studies consisted of rigorous mathematical

analyses of the highly simplified limiting case of two-dimensional turbulence

(see Speziale 1981, 1983) or more applied studies of three-dimensional turbu-

lence where the effects of rotations of the reference frame were accounted for

by a variety of ad hoc empiricisms (c.f., Majumdar, Pratap, and Spalding 1977, -

Howard, Patankar, Bordynuik 1980, and Galmes and Lakshminarayana 1983). There

have been several studies applying second-order closure models to turbulent

flows in rotating frames which are substantially less empirical in nature 5

(c.f., Mellor and Yamada 1974, So 1975, So and Peskin 1980, and Launder,

Tselepidakis, and Younis 1987). However, it was recently proven by Speziale

(1985) that these particular second-order closure models are fundamentally S



-2-

inconsistent with the Navier-Stokes equations in a rapidly rotating frame.

Consequently, such models cannot be applied to turbulent flows in arbitrary

non-inertial frames of reference without the need for making ad hoc adjust-

ments in the constants. Since direct numerical simulations of such turbulent

flows, at the high Reynolds numbers and in the complex geometries of scien-

tific and engineering interest, will not be possible for at least the next

several decades, it is essential that turbulence models be developed whose

properties in non-inertial frames of reference are consistent with the Navier-

Stokes equations. This forms the raison d'etre of the present study.

In this paper, it will be proven that turbulence models should be form

invariant under arbitrary translational accelerations of the reference frame

relative to an inertial framing (i.e., the exact invariance group of turbu-

lence models is the extended Galilean group). Rotations of the reference

frame will be shown to affect turbulence models only through the intrinsic

mean vorticity. It will be shown that these rotationally-dependent non-

inertial effects must vanish for a two-dimensional turbulence (i.e., material

frame-indifference in the limit of two-dimensional turbulence; see Speziale

1981, 1983) and should be consistent with Rapid Distortion Theory and the

Taylor-Proudman Theorem (c.f., Greenspan 1968). A systematic application of

these ideas will be shown to provide powerful constraints on the allowable

form of turbulence models. A variety of the popularly used turbulence models

(e.g., zero, one, or two equation turbulence models along with second-order

closures) will be shown to be in serious violation of these constraints which

can give rise to spurious physical results in rotating frames. Improved two-

equation models and second-order closure models will be presented along with

some brief applications to rotating turbulent flows.

.0
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2. CONSTRAINTS ON TURBULENCE MODELS IN NON-INERTIAL REFERENCE FRANES

We will consider the incompressible turbulent flow of a homogeneous

viscous fluid governed by the Navier-Stokes and continuity equations which

take the form (c.f., Batchelor 1967)

+ v * Vv = -VP + vV2v - x x - x × (Q x x) - - x v (1)

at 0

V • v=0 (2)

in an arbitrary non-inertial reference frame (see Figure 1). In Equations

(I)-(2), v is the velocity vector, P is the modified pressure, Q(t) is the

rotation rate of the non-inertial frame relative to an inertial framing,

60(t) is the translational acceleration of the origin of the non-inertial

frame relative to an inertial framing, and V is the kinematic viscosity of

the fluid. It should be noted that the Navier-Stokes equations are altered by

the presence of four frame-dependent terms on the right-hand-side of (1)

which, respectively, are referred to as the Eulerian, centrifugal, transla-

tional, and Coriolis accelerations. The continuity equation is frame-

indifferent, i.e., it has no non-inertial terms and, hence,is of the same form

in all frames of reference independent of whether or not they are inertial.

As in the usual treatments of turbulence, the velocity field v and

pressure P will be decomposed into ensemble mean and fluctuating parts as

follows:

V= + u, P -T'+ p (3)

where

1 (aN a
V lmIT li. I P 4
N~w a-I N-* a-I

a0
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are ensemble averages taken, in practice, over a large number of N realiza-

tions of the turbulence (c.f., Hinze 1975). For a statistically steady or

homogeneous turbulence, the ergodic hypothesis can be invoked and time

averages or spatial averages, respectively, can be substituted. The mean

velocity V and mean pressure are solutions of the Reynolds equation

and mean continuity equation which, respectively, take the form

-+ V V -VP + vV v -+ x x- x (x x x) - 2 x v (5)

v. 0 (6)

in any arbitrary non-inertial reference frame where

T uu (7)

is the Reynolds stress tensor. Equations (5)-(6) are obtained by substituting

the decomposition (3) into the Navier-Stokes equations and then taking an en-

semble average. The fluctuating velocity u and fluctuating pressure p are

solutions of the following equations (valid in an arbitrary non-inertial

frame):

-u + V • Vu - -u • VU- u • Vi- Vp + VVu - V • T - 29 x u (8)

V • u 0 (9)

which are referred to as the fluctuating momentum and fluctuating continuity

equation, respectively. Equations (8)-(9) are obtained by subtracting



-5-

Equations (5)-(6) from Equations (I)-(2), respectively. From Equation (8), it

is clear that the evolution of the fluctuating velocity u (for a given mean

velocity field) is only affected by the reference frame through the Coriolis

acceleration 22 x u. Eulerian, centrifugal, and translational accelera- O

tions only have an indirect effect on the fluctuating velocity through the

changes that they induce in the mean velocity.

At this point, the concepts of the Oldroyd derivative and intrinsic

vorticity will be introduced. The Oldroyd derivative of the fluctuating

velocity is defined by

Dt " atDrt t + V • Vu - a • V (10) "

and represents the frame-indifferent convected time rate of u following the

mean velocity with respect to both position and orientation. Unlike the sub- o

stantial derivative Du/Dt u/Wat + V • Vu, the Oldyroyd derivative is

independent of the observer; relative to any two independent non-inertial

reference frames x and x* (whose motions can differ by an arbitrary time-

dependent rotation and translation) the Oldroyd derivative of a given fluctu-

ating velocity field is the same, i.e.,

D u D uc _ c (II)

Dt Dt

The intrinsic vorticity W (also referred to as the absolute or potential

vorticity) is the vorticity relative to an inertial framing and is obtained by

adding 22 to the local vorticity 0 S V x v in the non-inertlal

frame. Hence, we have (c.f., Tritton 1977)

1 o
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W = w + 20 . (12)

By taking the ensemble mean and dual of (12), the intrinsic mean vorticity

vector and tensor are obtained which, respectively, are given in component

form by the equations

Wk = k + 2nk (13)

W kZ kZ + Cm 1km (14)

where W ( /3x - /axk ) is the local mean vorticity tensor and
k1erk I k k

Cmtk is the permutation tensor. A straightforward substitution of (10) and

(14) into (8) gives rise to the alternative form of the fluctuating momentum

equation

D- = - u - Vu - 2(* + V). u - Vp + vV2 u - V • (15)

which is valid in any non-inertial frame of reference. In (15), W is the

intrinsic mean vorticity tensor and is the mean rate of strain tensor

whose components are given by

I av k (16)
T +x_Tit YW.

I. k

in all frames of reference independent of whether or not they are inertial.

As a result of (15), it is clear that the evolution of the fluctuating

velocity (and higher-order moments constructed from it) only depend on the

reference frame through the intrinsic mean vorticity V.
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The Reynolds and continuity equations (5)-(6) are not closed as a result

of the additional unknowns represented by the six components of the Reynolds

stress tensor T k. In virtually all previous studies of turbulence model-

ing beginning with Boussinesq, it was tacitly assumed that the Reynolds stress

tensor is uniquely determined by the global history of the mean velocity

field. This assumption is generally consistent with the Navier-Stokes equa-

tions in an inertial framing as pointed out by Lumley (1970). Hence, in an

inertial frame of reference, we have

T = r[v(x,t-); x,tI x' E D, t' E (- ,t) (17) 0

where D is the fluid domain and a bracket [.] denotes a functional (i.e.,

any quantity determined by the global history of a function). It should be

noted at this point that both T and v are kinematical quantities whose

transformation properties under a change of frame are mathematically deter-

mined. To be more specific, given that x is an inertial frame and X * is

an arbitrary non-inertial frame, it is a simple matter to show from basic

kinematics that (c.f., Speziale 1979)

T T •(18)

v = V- 1 ×xX - U0. (19)

Consequently, once the inertial form of (17) is specified its non-inertial

form is automatically determined. It thus follows that if the non-inertial _

form of (17) is incorrect, its inertial form must also be incorrect since the

two are not independent.
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Since T is uniquely determined from the fluctuating velocity (i.e.,

T= -uu), it is clear that its invariance group must be at least as large as

the invariance group of the fluctuating momentum equation (8) (of course, (17)

constitutes a special solution of (8) and, hence, it could have a larger in-

variance group; c.f., Rosen 1980). Consequently, turbulent closure models

for T must be at least form invariant under arbitrary translational ac-

celerations of the reference frame. Hence, Equation (17) must transform in

the form invariant manner

T[V*(x',t'); x,tI = T[v(x',t'); x,t], x ED, t- E(--,t) (20)

under the extended Galilean group of transformations

X =X + C(t) (21)

where U0  -c is the translational acceleration of the non-inertial frame

relative to an inertial framing. Constraint (20) would, for example, forbid

turbulent closure models from having any explicit dependence on the mean

acceleration Di/Dt. Since any dependence on the rotation rate of the

reference frame must arise from the intrinsic mean vorticity, it follows that

in an arbitrary non-inertial frame, turbulent closure models for T must be

of the general form

Slr[v(X,t-), (x,t-); x,t] x' E D, t' E (-o,t). (22)

Here it is understood that the explicit functional dependence on v in (22)

Naz
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is frame-indifferent (i.e., does not contain any terms which depend on the

motion of the reference frame relative to an inertial framing). Frame-

dependence only enters implicitly through the intrinsic mean vorticity W.

Examples of one-point fields that are frame-indifferent functionals of the

mean velocity include S and D c/Dt; two-point fields that are frame- %
c%

indifferent include the vorticity difference &(x-,t) - B(x,t) and its

Oldroyd derivative.

Although three-dimensional turbulent closure models can be frame-

dependent through the intrinsic mean vorticity tensor W, it has been shown

recently that such models must become frame-indifferent in the limit of two-

dimensional turbulence (see Speziale 1981, 1983). By a two-dimensional turbu-

lence we mean a turbulent flow where the fluctuating velocity u is of the

plane two-dimensional form

U = u (x,y,t)i + u (x,y,t)j. (23)

Consistent with this two-dimensional assumption, the angular velocity of the

reference frame must be of the form 1 = k so that the mean velocity in-

duced by it is comparably two-dimensional. For such a flow, the Coriolis

acceleration in the fluctuating momentum Equation (8) is derivable from a

scalar potential as follows (see Speziale 1981, 1983)

20 x u V(2 ) (24)

since, as a general solution of the two-dimensional continuity equation, the

fluctuating velocity can be written in the stream function form

1 6 ,11 10
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u = V x k. (25)

Consequently, the Coriolis acceleration (which constitutes the only non-

inertial effect in Equation (8)) can be -hsorbed into the fluctuating pressure

in a two-dimensional turbulence leaving the fluctuating velocity unaffected.

Consistent with this result, the dependence of the Reynolds stress tensor on

the intrinsic mean vorticity (which characterizes these Coriolis effects) must

vanish in the limit of two-dimensional turbulence rendering the model frame-

indifferent. Thus, in the two-dimensional limit, turbulence closure models

for the Reynolds stress tensor must be of the same form

= T[v(x,t'); x,t] x'E D, t-E (--,t) (26)

independent of whether or not the reference frame is inertial. This invari-

ance property is referred to as the principle of material frame-indifference

in the limit of two-dimensional turbulence (see Speziale 1981, 1983).

The limit of two-dimensional turbulence constitutes a real physical limit

which can be zproached by any statistically steady turbulence, sufficiently

far from solid boundaries, in a rapidly rotating framework (a direct conse-

quence of the Taylor-Proudman Theorem; c.f., Tritton 1977). The Taylor-

Proudman Theorem in its classical form states that steady inviscid flows in a

rapidly rotating framework are two-dimensional, i.e., are independent of the

coordinate along the axis of rotation of the fluid. Of course, the Taylor-

Proudman Theorem holds in an excellent approximate sense for most laminar vis-

cous flows provided that the flow is sufficiently far removed from solid

boundaries where Ekman layers can develop. For a statistically steady

.' .Su .~~J . S .. . .......
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turbulent flow in a rotating frame, the Reynolds equation takes the form

V - Vv = -VP + VV2 v + V • T - 21 x V (27)

where the centrifugal acceleration has been absorbed into the modified pres-

sure P. The associated mean vorticity transport equation, obtained by

taking the curl of Equation (27), is given by

V - VO = - - VV + - V2 + V x (V • T) + 20 V (28)

where w V x V is the local mean vorticity in the rotating frame. If we

let 0 - Qk, Equation (28) can be written in the alternative form

k • Vv - 1 • Vs - s • Vv - vV2  - V x V • T). (29)

In the limit as Q -, Equation (29) reduces to

k -V-- 0 (30)

for a statistically steady turbulence. Sufficiently far from solid

boundaries, Equation (30) has the simple solution

V i(x,Y) (31)

and, thus, the mean velocity field for a statistically steady turbulence in a

rapidly rotating frame must be two-dimensional. If the flow is confined by
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boundaries normal to the axis of rotation (at distances sufficiently far re-

moved from the flow region being considered), the mean velocity field will be

of the two component form v = V x(X,y)i + Vy (x,y)J (see Tritton 1977). The

same type of two-dimensionalization will hold for the Reynolds stress tensor

in an approximate sense since the filtered velocity satisfies an equation of

the form of (28) and the large scales of turbulence contain most of the

energy. This is the turbulent generalization of the classical Taylor-Proudman

Theorem which has been verified experimentally to hold in an excellent approx-

imate sense provided that the Rossby number Ro v Al 0 << 1 (where to

and v0  are the length and velocity scales of the turbulent fluctuations).

Any turbulence model which does not yield such a Taylor-Proudman reorganiza-

tion in a rapidly rotating framework is fundamentally inconsistent with the

non-inertial form of the Navier-Stokes equations.

The last constraint that will be considered in this section involves the

application of Rapid Distortion Theory (RDT) to turbulence suddenly subjected

to a strong rotation. Since the Taylor-Proudman Theorem serves primarily as a

constraint on the large energy containing eddies in a rapidly rotating frame,

RDT will be used as a constraint on the small scale turbulence which is not

too far removed from isotropy. Hence, RDT for an initially isotropic turbu-

lence which is suddenly subjected to a rapid rotation will be considered. For

this problem, the initial Reynolds stress tensor and dissipation rate tensor

are of the isotropic form

Tj -- K06ij (32)

D 2 C 6 (33)ij ~ 0 ij
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respectively, where K0  is the initial turbulent kinetic energy and C is 

the initial dissipation rate of the turbulence (it should be noted that

Dux ) and E - D). Rapid Distortion Theory
ij 'Im' 2j~ui/x u1/ m if

predicts that the turbulence undergoes an isotropic linearly viscous decay

(c.f., Reynolds 1987). More specifically, according to RDT, the Reynolds

stress tensor and dissipation rate tensor are of the isotropic form

2 K(t)i j  2(34)
ij 3 t , Dij ij

at a later time t > 0 after the turbulence has been subjected to the rapid

rotation. Here, the turbulent kinetic energy and dissipation rate are deter-

mined from the energy spectrum E(k,t) as follows (c.f., Hinze 1975 )

K(t) - f E(kt)dk (35)
0

e(t) - 2v f k 2E(k,t)dk (36)
0

which are valid for an isotropic turbulence. Rapid Distortion Theory predicts

that the energy spectrum undergoes a linearly viscous decay, and thus at any

later time t > 0:

E(k,t) - E(k,O)exp(-2vk2 t) (37)

(it should be noted that in the limit of infinite Reynolds numbers, the energy

spectrum remains unchanged for finite times t > 0; c.f., Reynolds 1987). Of

course, RDT is only formally valid for short elapsed times t << K 0/ .

However, since a rapid rotation destroys the phase coherence needed to cascade
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energy from the large scales to the small scales (represented by the energy

transfer term), it would appear that RDT could hold for much larger elapsed

times for the case of a rapidly rotating isotropic turbulence. This was veri-

fied by the results of direct numerical simulations of the Navier-Stokes equa-

tions for isotropic turbulence subjected to a rapid rotation (see Speziale,

Mansour, and Rogallo 1987). These numerical simulations indicated that the

rapid rotation suppresses the energy transfer for long time intervals yielding

results in excellent approximate agreement with the RDT solution specified by

Equations (34) and (37) for the primary period of the decay (i.e., up to and

beyond the point where the turbulent kinetic energy has decayed to 10% of its

initial value). The time evolution of the energy spectrum obtained from a

1283 direct numerical simulation is shown in Figures 2(a)-(b) for a Reynolds

number Rex = 51 and a Rossby number RoA = 0.07 based on the initial

turbulent kinetic energy and Taylor microscale. These computed energy spectra

were illustrative of a linearly viscous decay during the entire period of the

computation (i.e., for 0.1 < K/K 0 < 1.0). The L 2  norm of the anisotropy

tensor was extremely small (Ibm2 < 0.01) for the entire duration of the

computation and, hence, the rotation had no discernible effect on the isotropy

of T. These results demonstrate strong agreement with RDT for large

elapsed times. Numerical results for the decay of the turbulent kinetic

energy (shown in Figure 3) illustrate that the rapid rotation gives rise to a

dramatically reduced turbulence dissipation rate due to the disruption of the

energy transfer from large scales to small scales. It is the opinion of the

author that these fundamental results (which are important since they capture

the essential physical features of the reaction of small scale turbulence to a

rapid rotation for long as well as short elapsed times) should serve as a
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basic constraint on turbulence models in rotating frames. Models that are in

serious violation of these RDT results are likely to give rise to spurious

physical results in rotating turbulent flows.
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3. INCONSISTENCY OF EXISTING TURBULENCE MODELS

As demonstrated in the previous section, the Navier-Stokes equations in a

non-inertial reference frame place the following basic constraints on the

allowable form of turbulence models: S

(i) Reynolds stress models must be form invariant under arbitrary trans-

lational accelerations of the reference frame and should only be affected

by rotations of the reference frame through the intrinsic mean vorticity.

(ii) All frame-dependent effects (and thus any dependence on the in- 0

trinsic mean vorticity) must vanish in the limit of two-dimensional

turbulence -- a constraint appropriately named material frame-indifference

in the limit of two-dimensional turbulence.

(iii) Reynolds stress models must be consistent with the Taylor-Proudman

Theorem for turbulent flows. This requires that a statistically steady

turbulence in a rapidly rotating frame (sufficiently far from solid

boundaries) be two-dimensional.

(iv) Turbulence models should be consistent with the results of RDT for

an initially isotropic turbulence subjected to a rapid rotation. This re-

quires Reynolds stress models to predict that an initially isotropic 0

turbulence undergoes an isotropic linearly viscous decay in a rapidly

rotating frame yielding a substantially reduced dissipation rate. S

''T
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First, we will note the inconsistency of the more empirical Coriolis

modified turbulence models with these constraints. These more empirical

models are characterized by the introduction of coefficients that depend ex-

plicitly on the rotation rate of the reference frame. For example, in the

model of Howard, Patankar, and Bordynuik (1980), empirical coefficients in the

transport equations for the turbulent kinetic energy and dissipation rate in

rotating duct flow were allowed to depend on the Richardson number

-2,( -v- 2SI)

Ri = - (38)

au )2

where Q is the rotation rate of the duct, u is the mean velocity along

the axis of the duct, and y is the transverse coordinate. A comparable em-

pirical model, based on the nonlinear algebraic model of Rodi (1976), was pro-

posed recently by Galmes and Lakshminarayana (1983) where an implicit depen-

dence on the Richardson number (given by Equation (38)) was introduced into

the Reynolds stresses. Such empirical models (which have also been proposed

by other authors) violate constraint (i) and are thus inconsistent with the

Navier-Stokes equations. More specifically, rather than an explicit depen-

dence on the rotation rate Q there should be an implicit dependence on SI

only through the intrinsic mean vorticity (i.e., the quantity -8u/ny + 211

for the rotating channel flow under discussion). The recent large-eddy simu-

lations of Bardina, Ferziger, and Reynolds (1983) for rotating homogeneous

shear flow demonstrated that the turbulent Reynolds stresses do not scale with

the Richardson number.

Eddy viscosity models form the foundation for most of the turbulence

models that are used by scientists and engineers. These models are of the

. U - N
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general form

DTkL = 2vTSkt (39)

where

T T T 6  (40)D ki rkt - mm kt

is the deviatoric part of the Reynolds stress tensor and vT is the eddy

viscosity in its kinematic form. Equation (39) encompasses a wide variety of

turbulence models which, by far, are the most commonly used models for the

solution of practical problems. We will now examine the consistency of a

variety of popular eddy viscosity models with constraints (i)-(iv) for ro-

tating turbulent flows. The simplest eddy viscosity models are the zero equa-

tion models where the turbulent time scale is constructed from the mean velo-

city gradients and the turbulent length scale is specified algebraically. Two

such popular models are the Smagorinsky (1963) Model given by

V T =  2 (2S mn _§mn )1/2  (41)

and the Baldwin-Lomax Model (or vorticity model) given by

2 -- 1/2vT = £2( W M) (42)

where t is the turbulent length scale which is usually specified empiri-

cally. The Smagorinsky Model, which is the tensorial generalization of

S
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Prandtl's mixing length theory , arose out of the Geophysical Fluid Dynamics

community and (as a subgrid scale model) has served as the cornerstone for

large-eddy simulations. Since VT only depends on S, it is frame-

indifferent for all mean flows and, as such, automatically satisfies con-

straints (ii)-(iii). However, since it is frame-indifferent in three-

dimensions as well as in two-dimensions, the Smagorinsky Model is fundamental-

ly incapable of describing the effects of rotation in retarding the energy

transfer process (as described in constraint (iv)) which ultimately has an

effect on DT.  However, such effects are primarily manifested in the large

scales and, consequently, the Smagorinsky model would be satisfactory as a

subgrid-scale stress model despite the fact that it has undesirable rotational

properties as a Reynolds stress model (see Bardina, Ferziger, and Reynolds

1983 and Speziale 1985).

On the other hand, it will now be shown that the Baldwin-Lomax Model is

more seriously inconsistent with the Navier-Stokes equations in a rotating

frame. It should first be noted that the eddy viscosity (42) is specified for

an inertial framing. However, as alluded to earlier, it follows from basic

kinematics that (see Speziale 1979)

S

T T, S = S, 0 = 0 - 2Q (43)

where the starred quantities are relative to an arbitrary non-inertial 0

reference frame x*. Hence, given that (42) is the inertial form of the

Baldwin-Lomax Model, it follows that its non-inertial form is given by

*For a unidirectional turbulent shear flow (with mean velocity iiyi

Equation (41) reduces to VT - £2Idu/dyl.

r0
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V = Z J )v/2 (44)
VT {2-M m "

While this model is consistent with constraint (i) (i.e., frame-dependent

effects only enter in through the intrinsic mean vorticity), it is in serious

violation of constraints (ii)-(iv). To be more specific, in the limit of two-
)2

dimensional turbulence, W W = (-W + 2Q) survives and hence there is a viola-mm

tion of material frame-indifference in the limit of two-dimensional turbulence

(i.e., in the two-dimensional limit, any dependence on S must vanish for

there to be consistency with the Navier-Stokes equations). Furthermore, since

according to (44), vT + c as S + c, the Baldwln-Lomax Model predicts that

there is an increase in turbulent dissipation corresponding to an increase in

the rotation rate of the framing which violates constraint (iv). This un-

bounded growth of vT as S + C also gives rise to the violation of

constraint (iii)--the Taylor-Proudman Theorem. For large Q, VT * 2U2n and

hence in the limit as Q + ®, (29) reduces to

k • V- - -2V x [V • (L2X)] (45)

with the implication that ai/az is not necessarily zero (i.e., v * i(x,y)

for any statistically steady turbulent flow sufficiently far from solid

boundaries) in violation of the Taylor-Proudman Theorem. It is thus clear

that vorticity models such as the Baldwin-Lomax Model are likely to yield un-

physical results for turbulent flows involving strong rotational strains and,

consequently, do not form a general foundation for either a Reynolds stress or

subgrid scale stress model.
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One-equation models involve the solution of an additional transport equa-

tion for the turbulent kinetic energy. The eddy viscosity for such models is

of the form

VT = K1/2 L (46)

where K is the turbulent kinetic energy (obtained from its modeled transport

equation) and z is an appropriate length scale of turbulence which is

usually specified empirically based upon the particular flow geometry under

consideration (see Cebeci and Smith 1974 and Rodi 1984 for a survey of such

models). Since the transport equation for K is frame-indifferent and -

since z is usually only specified based on the geometry of the flow con-

figuration, such models are identically frame-indifferent. Due to the fact

that they satisfy material frame-indifference in three-dimensional turbulent

flows as well as in two-dimensional turbulent flows, they are unable to pre- 'a

dict the reduction in turbulence dissipation that results from the application

of a strong rotation (i.e., such one-equation models are generally consistent

with constraints (i)-(iii) but in serious violation of constraInt (iv)). The

same precise criticism can be leveled against two-equation turbulence models

among which the K-e model has become extremely popular during the past

decade. In the K-e model, the eddy viscosity is represented by V

K2  (
VT - C (47)

where C = 0.09 is an empirical constant, K is the turbulent kinetic

energy, and F is the turbulent dissipation rate. In the K-c model, K S

and C are determined from modeled versions of their transport equations
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which are usually of the form (see fianjalic and Launder 1972)

DK = -i + a K at )4

DE a _C K a e E avI-- + C3 _ - - C - (49)
Dt 2x i ax. 3 K a iJ ax 4 K-

where D/Dt - + _v • V and C I - C4  are empirical constants. Equations

(48) (49) are of the same form independent of whether or not the reference

frame is inertial. Consequently, the K-c model is frame-indifferent for all

flows thus making It impossible for this model to account for the reduction n

dissipation that occurs in rotating isotropic turbulence as well as in othert,._

F-.o-.

rotating turbulent flows (i.e., the model is In violation of constraint

(iv)). Furthermore, the inability of the K-E model to accurately predict

normal Reynolds stress differences in turbulent flows of engineering

importance (see Speziale 1987) can be exacerbated further in rotating flows

where Coriolis effects usually give rise to stronger such anisotropies.

Problems of a similar nature exist with second-order closure models. All

of the commonly used second-order closure models are of the general form (see

Speziale 1985) S
D cT kZ ac kt.(T,VT,Z)

Dt (C1 - 2)[T km Utm + T kM km] +--m(5)

(50)

+ tkkt(T,Ig,t) + VV2 T kt

in an arbitrary non-inertial frame, where

Dc k kt - a k ;_ t
Dt - VV~ +  

"VTkL - W Tm - mk1)
m m

AS
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is the frame-indifferent Oldroyd derivative of T and C1  is a constant -6

(which arises from the rotationally dependent part of the rapid pressure-

strain correlation). Here, C is a function of the variables r, VT,

and z which arises from the modeling of the triple velocity and pressure- .

diffusion correlations whereas 7F is a function of T, S, and £ which % ,

arises from the irrotational part of the production terms and the modeling of .

the slow pressure-strain and dissipation rate correlations. This general form

(50) encompasses the Launder, Reece, and Rodi (1975) model, the models of

Lumley (1978), and the Rotta-Kolmogorov model (see Mellor and Herring 1973).

In the former two models, the length scale of turbulence z is taken to be

of the form

Z = K3/21/ (52)

where the dissipation rate E is determined from a modeled transport equa-

tion which is of the same general frame-indifferent form as (49). Analogous-

ly, in the Rotta-Kolmogorov model the length scale t is obtained from the

transport equation (see Mellor ard Herring 1973): N

D(K£) a2 a 3/2 a]- [(V + 1  j) (KZ) + . -t
Dt axf v+ 1K ax 1 2 ax1

3/2 (53)

+ 8T I K /2
3 ij W -X 4

(where 1 2 3 and 84 are empirical constants) which is of the same %

form in all frames of reference independent of whether or not they are iner-

tial. Consequently, since DcTkt/Dt, aCkm /axm' n k and 72 Tkt are frame-

indifferent along with the transport equations for E and E, it follows

ifo

1%
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that frame-dependence in the commonly used second-order closures arises

exclusively from the term

(C - 2)(T TI +T T4k). (54)
Ih kmXm em km

V.

Since C1  is a constant that does not equal 2 (in the Launder, Reese, and

Rodi model, C1 = 0.6 whereas in the Rotta-Kolmogorov model, C1 = 0) and

since r km 1m + r mWkm1 does not generally vanish in a two-dimensional

turbulence, it follows that material frame-indifference in the limit of two-

dimensional turbulence is violated. This inconsistent dependence of (50) on

V also gives rise to a violation of the Taylor-Proudman Theorem in problems

of engineering and geophysical interest since the constraint

QZim V x (V T) = 0 (55)

(which is a necessary condition for the Taylor-Proudman Theorem) is violated

in statistically steady turbulent flows by these second-order closures. P

. Furthermore, since the transport equations for c and Z are frame-

indifferent in the commonly used second-order closures, they are unable to

account for the reduction in dissipation (and the associated change in length

scales) in rotating isotropic turbulence. Thus, for turbulent flows in a
~SJJ

rapidly rotating frame, the commonly used second-order closure models are in

rather serious violation of the Navier-Stokes equations. Although Launder,

Tselepidakis, and *ounis (1987) were able to get reasonable correlation with

experiments on rotating channel flow using the Launder, Reece, and Rodi

second-order closure, it must be noted that only mild rotations with Rossby

'P . ' p.I i



-25-

numbers Ro - 10 were considered (the reader should note that the Rossby .]

number referred to in Launder, Tselepidakis, and Younis 1987 is actually the

inverse Rossby number). Had those authors considered more rapid rotations

(i.e., Rossby numbers Ro < 0.1) serious inconsistences would most likely

have arisen as discussed by Speziale (1985).

Recently, a modified transport equation for the turbulence dissipation

was proposed by Bardina, Ferziger, and Rogallo (1985) with the purpose of

accounting for the reduction in dissipation that occurs when isotropic turbu-

lence is subjected to a rigid body rotation. This model is of the form

De K a av i
- -C b (KTi a- + C -
Dt 2 axi C jax 3 Ku'i ax1

(56)2
-C 4 C-C _ ( 1 /2

4 5(wui)

which differs from the more commonly used model (49) by the addition of the

last term on the right-hand-side of (56). For isotropic turbulence in a

rotating frame, Equation (56) takes the form

__ ~ 2
d 4 C5  . (57)

Bardina, Ferziger, and Rogallo (1985) found that (for C5 i 0.15) Equation

(57) predicted reductions in the dissipation rate that were in fairly good

agreement with the experiments of Wigeland and Nagib (1978) for rotating iso-

tropic turbulence. However, several criticisms can be leveled at Equation

(56) when applied to anisotropic and inhomogeneous turbulent flows. For

example, the dependence on the intrinsic mean vorticity term Wj Wlj does

iii

mS
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not vanish in a two-dimensional turbulence, thus, violating material frame-

indifference in this limit. Furthermore, Equation (56) was obtained from (57)

by an extrapolation which is not unique. More specifically, there are other

invariants besides (1 WiW )1/2  which reduce to S in a rotating
2 i;Wij

isotropic turbulence (see Speziale, Mansour, and Rogallo 1987). These prob-

lems will be addressed in the next section where a hierarchy of consistent

models will be developed.
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4. IMPROVED TURBULENCE MODELS FOR NON-INERTIAL REFERENCE FRAMES

In this section, improved two-equation turbulence models and second-order

closure models that are consistent with the non-inertial constraints derived

in Section 2 will be developed. Since rotations can dramatically enhance ani-

sotropic effects and alter the dissipative properties of the turbulence, eddy

viscosity models are more likely to yield inaccurate predictions in rotating

reference frames. Hence, it is best to base two-equation turbulence models on

some suitable nonlinear generalization of the eddy viscosity models when

applications to rotating flows are envisioned. Recently, the author developed

a nonlinear K-t and K-E model along these lines (see Speziale 1987)

which appears to account for anisotropic effects much more accurately. This

model is of the form

2 K1 / 2 i  2 DcSi -- -

T - 6 + Kt + CDI (T + S mimj + SmnSmn6 ~i (58)

in an arbitrary non-inertial frame where CD is an empirical constant which

was found to assume an approximate value of 1.68 by correlating with turbulent

channel flow data. Here, 9 is the length scale of turbulence which is

given by 0

2 = 2C K3 /2  (59)
U C

for the K-c type model. This model constitutes a substantially simplified

version of a nonlinear eddy viscosity model recently derived by Yoshizawa

(1984) using Kraichnan's DIA formalism; the simplification primarily arises

from invoking the constraint of material frame-indifference in the limit of 0

two-dimensional turbulence which Yoshizawa's full nonlinear model violates.
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Since (58) represents a quadratic extension of the linear eddy viscosity

models which are algebraic in nature, it follows that the satisfaction of

frame-indifference in the two-dimensional limit restricts any frame-dependence

in three-dimensional turbulence to arise exclusively from changes in the

scalar length scale 9. Unfortunately, such a weak frame-dependence cannot

account for the considerable additional anisotropies that are caused by a

moderate system rotation of turbulent shear flows of scientific and engineer-

ing interest. The constraint of material frame-indifference in the two-

dimensional limit becomes important in rapidly rotating frames where there is

a Taylor-Proudman reorganization of the flow--a limit which is largely outside

of the domain of applicability of such simplified algebraic models which can-

not account for extremely large anisotroples. Hence, we will relax this con-

straint In favor of another approximation that follows from a simpified

analysis of the Reynolds stress transport equation. Bardina, Ferziger, and

Reynolds (1983) showed, for homogeneous turbulent flows, that the unmodeled

Reynolds stress transport equation yielded the following analogy: the appli-

cation of a mean strain in a rotating frame is the same as the appli-

cation of a mean strain and mean rotation 2Q in an inertial frame of

reference. This analogy (which is not a rigorous consequence of the Navier-

Stokes equations since rotational effects arising from the higher-order

moments were neglected) was shown by Bardina, Ferziger, and Reynolds (1983) to

be a relatively good approximation for certain rotating turbulent shear flows

and to be consistent with invariance under the Richardson number. The appli-

cation of this analogy to the derivations in Speziale (1987) yields a non-

linear K-c model of the form

S
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2 1I /2 2--

T =- K6 +K 1/ - CD(S t Sikkj
ij T ij ij D ij -, k

(60)

1-
S mn mn6ij + ikSkj + jkSki

where
- aij (61)- +

ij at + VikSkj - 'jkSki (.61

is the frame-indifferent Jaumann derivative and the length scale is given by

I = 2C K3/ 2/. For a homogeneous turbulence with constant mean velocity

gradients in an inertial frame or for turbulent channel flow (the two cases

considered when the nonlinear K-c model was first calibrated), both (58)

and (60) reduce to the same form

T 
= -2 Kj + K1/2 1iJ - CD12[TkT

,j T iij D ik kj

(62)
1  SS6 +oi +w

- T mn mn ij +ikSkj +jkSki ]

and hence the value of CD = 1.68 will not be altered. It will now be shown

that this new nonlinear K-e model yields dramatically improved predictions

for homogeneous turbulent shear flow in a rotating framework (see Figure 4).

Here, the constant C was taken to be 0.055 (the value recommended by

Rodi 1984 for homogeneous turbulence where the ratio of the production to dis-

sipation is equal to two) and the traditional transport Equation (49) for C

*It is interesting to note that Equation (62) bears a resemblance to the _

nonlinear two-equation models of Pope (1975) and Saffman (1977).

gal



-30-

was used with C3 = 1.45 and C4 = 1.90. A closed form equilibrium solution

can be obtained which is of the form

b CC2 [ 7 8 (Q)], b2 C DC 2 [- 5 + 8 ( Q1 (63)
2 2 2 2  D

b1 DC a b b2C 2 S K D 2, +/ 8 ~C- k (63)
b2 = -/Cci , 2 -S --

12 33 3D 2 SK/c = C (64)

where the ratio of production to dissipation a = (C - 1)/C - 1) and
= 2

the anisotropy tensor b = -(j + 2 )/K. A comparison of the results
ii ij ii

obtained from the linear and nonlinear K-C models (along with the experi-

ments of Tavoularis and Corrsin (1981) and the large-eddy simulations of

Bardina, Ferziger, and Reynolds (1983))are shown in Table 1. Here, the equi-

librium values of the anisotropy tensor obtained from the nonlinear K-c

model are dramatically improved with respect to its normal components (the

reader should note that b3 3  is not shown since it is precisely equal to

-(bll + b2 2 ) due to the fact that bij is traceless). Unfortunately, no

experimental data is available for rotating shear flow and the values of the

anisotropies obtained from the large-eddy simulations are somewhat inaccurate

due to course resolution and the lack of a good defiltering scheme. However,

there is no question that the normal components of the anisotropy tensor pre-

dicted by the nonlinear K-c model constitute a considerable improvement

over their linear counterparts. Both the linear and nonlinear K-c models

yield the same predictions for the equilibrium values of b1 2  and SK/c

which are the same for all values of Q/S. This is not consistent with

physical and numerical experiments which Indicate that b12  and SK/c can

vary considerably with Q/S. In order to predict this dependence, a modi-

9 nil *- pill .%
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fied dissipation rate equation must be developed which properly accounts for

rotational strains--a task of considerable difficulty.

Now, a consistent modification of the modeled dissipation rate equation

will be developed which can account for the considerable reduction in dissi-

pation which occurs in a rapidly rotating isotropic turbulence. As mentioned

in Section 3, the intrinsic mean vorticity invariant ( IV"i )/ does

not vanish in the limit of two-dimensional turbulence. However, this invari-

ant was arrived at by Bardina, Ferziger, and Rogallo (1985) since it reduces

to a in a rotating isotropic turbulence (it was Equation (57) that was used

to correlate with the experiments of Wigeland and Nagib 1978). Alternatively,

there are other invariants that reduce to fl for rotating isotropic turbu-

lence but vanish in the limit of two-dimensional turbulence. The primary such

invariant is

I --w -- -- ij + T1 l~ l/2
(W) = iikik K q)l/ (65)

which was first introduced by Speziale (1985). This gives rise to the alter-

native modeled transport equation for the dissipation rate

Dc a K ae (IT)K C i
Dt C T i '5_X + C 3f( I)C XTjy

_ xi (66)

I(Tw) 2
C fe

where fj and f2  are sufficiently smooth functions of the dimensionless

invariant I(TW) K/. For plane homogeneous turbulence, the invariant I(TW)

reduces to

T
I =) 33 w2 1/ (67)

120

Q III I IN
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and, hence,for small anisotropies (where T 2 K)

1(r) " = (I WW)1. (68)

0

If we approximate f, and f2 as linear functions of the form %

I(TW)K
f,-1- 1 (69)

f= 1 + Y2 I(:W) (70)

(where Y and Y are dimensionless constants) it follows that (66) is

in close approximate agreement with the most recent Bardina modification of

the dissipation rate transport equation given that Y 0.01 and

Y2 " 0.079 (this model also reduces to the more simple model given by (57)

for rotating isotropic turbulence). Such a model has been shown by Bardina to

work reasonably well for rotating isotropic turbulence (at moderate rotation

rates) and for simple plane turbulent shear flows subjected to mild rotational

strains. However, unlike the Bardina model, this new model for the dissipa-

tion rate satisfies material frame-indifference in the limit of two-

dimensional turbulence (as can be seen from (67) since I (Tw) + 0 as r

T + 0) and allows for more general nonlinear dependence on W (the

simple linear expressions (69)-(70) break down when a wider variety of flows

is considered). Nonlinear generalizations of (69) and (70) should be pursued

in future studies.

Finally, the implications that the non-inertial constraints derived in

Section 2 have on second-order closure models will be examined. As alluded to
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NO,
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before, the Launder, Reece, and Rodi (1975) model as well as the other common-

ly used second-order closures violate material frame-indifference in the limit

of two-dimensional turbulence and do not give rise to a Taylor-Proudman re-

organization for statistically steady turbulent flows in a rapidly rotating

framework. In fact, Speziale (1985) recently showed that for rotating turbu-

lent channel flow (see Figure 5) these second-order closure models yield the

spurious result of a vanishing Reynolds shear stress

Txy 0 (71)

in the limit as 1 + 0 and do not give rise to a full Taylor-Proudman

reorganization to a two-dimensional state. These problems were not en-

countered in the recent study of Launder, Tselepidakis, and Younis (1987)

since they restricted their attention to flows with Rossby numbers greater

than 10 (a Taylor-Proudman reorganization would only be expected for Rossby

numbers less than 0.1--a value nearly two orders of magnitude smaller than

those considered therein). Complete consistency with the non-inertial con-

straints (i)-(iv) derived herein can be obtained from second-order closures of

the general form

" T Lm Tmn Wnk ) - OIF + Yl( w)(T ki T- m6k (72)

" c 'x(,T,- + ' ~ ( ' ' ) + VV2"r T

c k1t-

m.55

tmkmIkmmnn
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where e is obtained from the new modeled transport Equation (66) and

0, , y are dimensionless functions of I (Tw) and the invariants of T

(which can be taken to be constants in the first approximation). The first

term on the right-hand-side of (72), with the coefficient a, arises from

the rotationally dependent part of the rapid pressure-strain correlation.
S ~.5

This term was recently derived from a Langevin model by Haworth and Pope

(1986) who showed that it vanishes in the limit of two-dimensional

turbulence. The second term on the right-hand-side of (72), with the

coefficient Y, represents the rotationally dependent part of the return

term which, in a rapidly rotating frame, was shown by Speziale (1985) to give S

rise to a Taylor-Proudman reorganization to a two-dimensional state wherein it

then vanishes. Here again, Cktm  is the third-order diffusion correlation

which is frame-indifferent and w kt accounts for the rotationally inde-

pendent parts of the production, pressure-strain and dissipation rate correla-

tions. In addition to satisfying material frame-indifference in the limit of

two-dimensional turbulence (along with consistency with the Taylor-Proudman

Theorem), this new second-order closure also satisfies constraint (iv). To be

specific, the rotationally dependent terms in (72) vanish in an isotropic

turbulence and the modified dissipation rate equation (66) gives rise to re-

duced dissipation in a rotating frame consistent with constraint (iv). As a

result of the dramatically improved non-inertial properties of (72), spurious

physical effects such as (71) (that are predicted by the commonly used second- S

order closures) can be avoided. Equation (72) represents a hierarchy of

second-order closure models whose detailed study represents an extensive

research effort that is beyond the scope of the present paper.

S'
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5. CONCLUSION

In this paper, several important constraints that turbulence models must

satisfy in non-inertial frames of reference were derived as a rigorous conse-

quence of the Navier-Stokes equations. Of particular importance was the con- S

straint that turbulence models should only depend on the frame of reference

through the intrinsic mean vorticity tensor and that all such frame-dependent

effects must vanish in the limit of two-dimensional turbulence. In addition,

it was also shown that Rapid Distortion Theory for an isotropic turbulence

suddenly subjected to a strong rotation can serve as an equally important con-

straint requiring an initially isotropic turbulence to decay isotropically 6
IV

(with a reduced dissipation rate) in a rotating frame. All of the commonly

used turbulence models were shown to be in serious violation of these con-

straints and, thus, inconsistent with the Navier-Stokes equations. An im- .

proved two-equation turbulence model was developed which was demonstrated to

be substantially superior to the more standardly used K-E model in the

description of homogeneous turbulent shear flow in a rotating frame. Further-

more, a hierarchy of consistent second-order closure models was developed

which have dramatically improved properties in rotating frames over the more

commonly used second-order closures. A complete calibration and testing of 0

such models is a massive research effort that is beyond the scope of the

present study. However, such work is currently underway in collaboration with

others.

Finally, it should be mentioned that the results of this study could have

important implications in the analysis of curved turbulent flows. As demon-

strated herein, once the inertial form of a turbulence model is specified, its •

non-inertial form is automatically determined by appropriately replacing the
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mean vorticity with the intrinsic mean vorticity. Consequently, if a turbu-

lence model exhibits incorrect behavior in a non-inertial frame, this means

that the dependence of the inertial form of the model on the mean vorticity is

faulty. Since the mean vorticity plays an important role in the description I

of curved turbulent flowsit is quite likely that the difficulty in describing

such flows is a result of the use of models that exhibit physically incorrect

non-inertial behavior. A more detailed discussion of this point will be the

subject of a future paper.
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Equilibrium Linear Nonlinear Large-Eddy

Values K-Ec Model K-ec Model Experiments Simulations

bl0 0.431 0.403 0.606

0 b20 -0.308 -0.295 -0.530

b-0.332 -0.332 -0.284 -0.288

SK 6.03 6.03 6.08

b,0 0.0616 -0.121

Ln b200.0616 
-0.091

b2-0.332 -0.332 -0.697

S. 6.03 6.03-
*e
a.S

b,0 -0.308 -0.530

Ln b22  0 0.431 0.500

b2-0.332 -0.332 -0.197

SK 6.03 6.03-

Table 1. Equilibrium results for homogeneous turbulent shear flow in a ro-

tating frame: Comparison of the predictions of the K-C model with the

large eddy simulations of Bardina, Ferziger, and Reynolds (1983) and the ex-

periments of Tavoularis and Corrsin (1981).
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Figure 2. Energy spectrum obtained from a direct numerical simulation of ro-

tating isotropic turbulence: (a) t - 0, (b) t > 0 (K/K 0 -* 0. 1).
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Figure 2. Energy spectrum obtained from a direct numerical simulation of ro-

tating isotropic turbulence: (a) t - 0, (b) t > 0 (R/C 0 0.1).
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Figure 4. Homogeneous turbulent shear flow in a rotating frame.
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Figure 5. Turbulent channel flow in a rotating frame.
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